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Abstract

This paper proposes two analytical methods which are essential for dealing with the wave propagation
through a dielectric step discontinuity; one is a method to accelarate the convergence rate of solutions,
especially for TM-mode problems, and the other is a method to treat efficiently the waves with continuous
spectrum, in case of open waveguides. It is shown with a number of numerical results that our proposals
are quite poverful {n the investigation of discontinuity problems.

A, Introduction

Periodically-grooved gratings on a dielectric
waveguide are currently being considered for
application to integrated circuits in the range
from millimeter-wave to optical frequencies. The
present authors were successful in analyzing the
characteristics of gratings which were partially
installed on a planar waveguide{1l]. To the di~
electric gratings, the step discontinuity is an
essential problem to be investigated, and our
general interest here 1is such a case as a
surface-wave mode impinges not normally but
obliquely to the discontinuity; in addition, the
continuous spectrum should be taken into
account.

An oblique incidence of a TE or a TM mode
produces not only a reflected and a transmitted
mode of its own type, but also such modes of the
other type in polarization[2]. Therefore, it is
essential to a success in solving the problem
mentioned above that one can achieve the iden-
tical degree in both convergence rate and ac-
curacy of solutions for the incidence of both mode
types.

The previous studies which investigated the
mode propagation through a dielectric step dis~
continuity were almost concerned with the cases
of TE-mode incidence, and they discussed less
extensively the cases of TM-mode incidence. Also,
the continuous  spectrum was ineffectively
discretized to the microwave network approach.
Thus, there remains the need for strict inves-
tigations on these problems, and that need is
satisfied by the present paper.

B. Field Singularity at Dielectric Edges

Let us first consider a step discontinuity in
a parallel-plate waveguide that is partially di-
electric filled as seen in Fig.l. If the upper con-
ducting plate is removed, we have an open wave-
guide to be considered later on. There are two
dielectric edges along the y axis at x = t:1 and
t, at z = 0, which give rise to the singular be-
havior for the TM-mode incidence and have no
longer such an edge effect for the TE-mode inci-
dence. A usual approach, which approximates the
field in each guide by the mere truncation of an
infinite series of the orthonormal modal functions,
solves the boundary problem by means of the
mode matching. One thereby misses an important
information of the edge effect which is connected
with the neglected higher-order modal functions,
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and suffers a too slow rate of convergence of
solutions, especially for TM-mode problems. To
recover such an information, Vassallo[ 3]
presented a method based on the application of
the Meixner's edge condition[4]. His approach,
however, still depends on the full modal
expansion of the singular field, and no
improvement was achieved in convergence rate.

Our approach recovers the information of the
edge effect not in terms of the modal expansion of
the singular field, but in terms of straightforward
use of the functional form itself, and solves the
boundary problem not by a simple mode matching,
but by a method fitting the fields in both guides
by the sense of least square[5]. To the above
end, we assume the x component of the singular
electric fields locally bounded around x = tp at =z
=0by | x-tp |Yp, (p=1,2and -} <yp <0
), and approximate the electric field tangential to
the discontinuity plane in guide 1, for example,
as follows:

N
E = Z_ (Gnq+Rn) e p{x) +
n=o
Eoror K > A 1, (D
x -t - e x)1, 1
p=1 p p =0 n,p xn

where the TMg-mode incidence is assumed and
Rn, I'p are unknown coefficients to be solved,
while An,p are known. It is clear that our ap-
proach has only to calculate a few number of
amplitudes of (1) for n <N, unlike Vassallo's
approach, and does not encounter the serious
difficulty that his approach does, thereby yield-
ing a satisfactory rate of convergence as seen
later on.

C. Discretization of Continuous Spectrum

In case of the discontinuity problem in open
waveguide mentioned above, one must always
consider an appreciable coupling between the
discrete surface-wave modes and the waves with
continuous spectrum, besides the edge singu-
larity. Owing to the presence of this continuous
spectrum, it is customary to discretize it by in-
troducing the Laguerre transform{6],[7]. In a
usual discontinuity, however, most of energy
carried by an incindent surface-wave mode
couples strongly to a part of continuous spectrum
in a limited narrow range. To such a case, the
Laguerre transform always causes the conver-
gence difficulty because it is effective only for a
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so-called good function behaving well over the
entire range of the continuous spectrum.

To circumvent such a difficulty, we divide
the continuous spectrum into three ranges: one
corresponds to the radiation part of it, the
second is an optimally scaled extent of the re-
active part, and the third, disregarded here, is
the rest of the reactive part. To follow this
approach, we have only to discretize independ-
ently the spectrum in each range. To this end,
we employ the Legendre transform to which the
normalized Legendre functions provide the com-
plete set of basis functions in each range. On the

other hand, the singular fields Esp(x), ( p =
1,2 ) in this case are assumed as follows:
Y
IX"tp|p’ x < 2tp
- Y
E = (2)
sp tp p exply,(x - 2tp ) /tpl , x> 2tp

where the decaying Esp(x) beyond x = 2tp is
assumed so as to assure the convergence of in-
tegration with respect to x.

D. Numerical Results

We assume first the discontinuity described
by the parameters ti/tz; = 1.2, d/ti1 = 2.0, and
kod = 5.0 in Fig.1l, so that the only TMn modes (
n = 1,2 ) are above cutoff in each guide, and it
is considered that the fundamental TM; mode is
incident normally to the step from the left-hand
side of guide 1. We compute the reflected and the
transmitted powers of TM, and TMi modes, the
degree of power conservation ( total power ), and
the least mean-square error at the boundary, by
considering a number of modes below cutoff.
Table 1(a) shows the reasults for different
number of modes N. In this calculation, nothing
is considered on the edge singularity, and it is
found that the usual approach barely ensures the
power conservation of 100.000 % at N = 200. On
the other hand, Table 1l(b) shows the results
obtained by our method. We can clearly recognize
a remarkable difference in approach; ours easily
attains the same degree of power conservation and
the mean-square error less than 0.001 % at N =
20; one-tenth in the number N necessary for the
usual approach.

Fig.2 summarizes the caluculated mean-
square error as a function of different number
N, If the upper conducting plate is placed far-
ther above, for example, kod = 25, it is neces-
sary to take a huge number N ( a few hundreds
) to achieve the error less than 0,001 % in usual
approach, while ours needs only N =z 40 ( see
also Fig.2 ). Such a dramatic decrease in N
suggests that our approach has a great value in
investigating the discontinuity problems.

Let us next consider a step discontinuity
in an open dielectric waveguide which is given
by that of Fig.l with the removed upper metal
plate. We again analyze the TM, mode incidence
to the step from the left-hand side. Table 2(a)
shows the results obtained without any consider-
ation on the edge condition, while Table 2(b)
indicates the results obtained by our approach
comprising both the Legendre transform and the
consideration on edge singularity in our way. As

expected, the present approach improves the
magnitudes of total power and the error by a
figure or more to those appeared in Table 2(a).
Therefore, we may conclude that our approach is
quite effective even for the discontinuity problem
in open waveguides.

Fig.3 shows the reflection, transmission, and
radiation powers as a function of t,/t;. The
relative transmission power is 100 % at to/t; =
1.0, as it should, since the discontinuity dis-
appears. As t;/t:1 decreases, the transmission

power goes to zero, while the radiation power
reaches almost 100 % and the reflection power
goes to its small limiting value, since the

surface-wave mode is no longer guided in guide 2
for t»/t; = 0.

Fig.4 shows the radiation patterns, where
the peak value is normalized to unity for each
radiation pattern. Since the TM; mode has the Ex
component symmetric to the y-z plane at x = 0,
radiation occurs into the end-fire (z) direction
for ta/t1 = 0. As t»/t: increases, the angle of
radiation peak changes monotonously from zero to a
limiting angle of elevation on account of the step
discontinuity.

Although additional interesting data will be
shown at the presentation, the investigations
presented here are sufficient to conclude the
purpose of this paper, and are currently apply-
ing to the development of practical integrated-
circuit components.
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Fig.1l. Step Discontinuity in dielectric waveguide .(
For an open configuration, the upper
conducting plate will be removed ;
tl/tzlzl 2, d/t1 = 2.0, kod = 5.0, n1=146,
ng =

TABLE 1 Characteristic Values Calculated for

Different Number N of Expansion
Terms, in Case of a Closed Structure.
(a) Usual Approach; (b) Present One.
(a)
N |Betlected Power ) | Transmitted PowerB/d| Total E o)
TMa mode] TMomode| TM) mode| Powerleg | =% ~%
10f 0:001 0.010] 99.546] 0.039 ] 99.595] 0.354
20] 0.001 0.013] 99.796) 0.046 [ 99.85%6] Q-1
30/ 0.001 0.014] 99-891] 0.048] 99.954| 0.039
401 0.001 0.014 | 99.907| 0.048] 99.972 0-024
50 0.002 0.014 ) 99-918[ 0.049 | 99.982! 0.016
ool 0.0p2] 0.015] 99.932; 0.049| 99.997| 0.004
150 0.002 0.015] 99.934| 0.049 ] 99.999} 0.001
2000 0.002 | 0.015 | 99.934| 0.049{100.000| 0.000
0.002 0.015 99.934 0.0491100.000 0.000
(b)
N Retlected Power (°ld | Transmitted PowerBig| Total Error [%]
TMe mode] TMi mode | TMemode| TMr mode | Power (%
5] 0001 0.015] 99.925] 0.049| 99.980} 0.009
10l 0.002] 0.015] 99.929 0.049( 99.994] 0.004
i5] 0.002] 0.015] 99.935| 0.050)100.001 0.001
20] ©6.002 0.015] 99.935| 0.049{100.000{ 0.000
25] 0.002 0.015 | 99.934] 0.049[100.000] 0.000
30] 0.002] 0.015] 99.9341 0.0491100.000] 0.000
TABLE 2 Characteristic Values Calculated for
Different Number N of Expansion

Terms, in Case of an Open Structure.
(a) Usual Approach; (b) Present One.

(a)
N I}:?,eflect@d [Transmitted|_Radiation Powe: . Totul[%] Error B)
11 0.000[98.38, ] 0.027] 0.0691! 98481} 1,107
21 0.000198.483] 0.024] 0.0721 98.579] 1.01¢
310.000198.474] 0-019] 0-062| 98.555! 0.976
41 0.000[98.807( 0.006 0.080 98 889] 0.753
5[ Q0.000]99.053] 0.010} 0.0701] 99-134 659
610.00 99.569] 0.015] 0-070] 99.655 435
710.00 99.531 o) 0.068] 99.617 .356
810.00 99530/ 0.019[0.068[ 99.618; 0-329
910.00 99.530 .Q 00681 99 . 5181 0.37
(b)

Refl d T itted] _Radiati Power Total o
N Pc?wzf('iMa PLOJ::(TEII;\A,, Reﬂ:ctle?cjlonTransrnmed Power [%] Error [%]
%21 0.001[99.822] 0.039] 0,075] 999371 0.11
510.002}99.972 .0341] 0.085[100.0931 0.06
6] 0.002199.873 0281 0.080] 99.982] 0.0
710.001]99.849] 0.030} 0.081 [ 99.962| 0.038
81 0.001199.838] 0.025]1 0.076 ] 99.940 0.033
91 0.001 1998481 0027100781 99. 0.03

Fig.2.

Fig.3.

Fig.4.
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